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ABSTRACT 

A notion of a probabilistic tree automaton is defined and a condition is 
given under which it is equivalent to a usual tree automaton. A theorem about 
context free languages is stated. 

0. Introduction. 

In  [1] Thatcher and Wright introduced a notion of finite automaton,  whose 

space of  work is labelled finite binary tree. This notion is an extension of  the 

notion of  finite automaton over linear tape as studied by Rabin and Scott ([2]). 

In this work we define, following Rabin [3] (for the linear case), the notion 

of  probabilistic tree automata and prove that his cut point theorem holds here 

as well. This actually settles a question proposed by Rabin [6]. 

Using the connection found by Thatcher in [4] between tree automata  and 

production trees of  context free grammars,  we are able to state a cut point theorem 

for weighted context free languages. 

1. Definitions and notations. 

P(A) is the power set o f  A and [A[ is the cardinality o f A .  A* is the set o f  all 

finite sequences over A. 

DEFINITION 1.1. The full binary tree Tis  the set {0, 1}* where the tree relation 

is the extension relation 

(1.1) x =< y iff there is z s.t. y = x z  

where x z  means the concatenation of  x and z.  The two immediate successors 

of  x are x0 and x l .  The empty sequence is denoted b y A .  

* This research was partially supported by ONR, Contract No. N00014 69 C 0192. 
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DEFINITION 1.2. A finite tree E is a finite subset o f  T s.t. 

x ~ E  and y < x:~ y E E  

and every x in E has either two successors or none in E .  

The set of  maximal elements of  E is the frontier of  E (denoted by Ft(E)). E is 

a finite set. 

DEFINITION 1.3. A labelled tree in the alphabet X is a pair (v,E) where E is 

a finite tree and v is a function v:E ~ Z.  A labelled tree in X will be called a 

E-tree or just tree where no confusion is liable to arise. 

The set of  all X trees is denoted by Vz. 

DEFINITION 1.4. Let E be a finite tree 

e + = {A} 1.3 E" {0) [3 E .  {1) 

where the dot represents concatenation of  sets (A • B is the set of  all concatenation 

of  an element of  A with an element of  B). 

E + is clearly a finite tree. 

Now we define the notion of  a tree automata and it turns out that we have 

two different notions of  automaton as to the direction of  its work - - f rom the top 

of  the tree to its bot tom or from bot tom to the top. We consider trees as depicted 

in the following form: 

Fig. 1 

DEFINITION 1.5. A sinking automaton (s.a.) over Z is a quadruple 

A = ( S , M ,  So ,F)  where S is a finite non empty set--the set of states 

M: S x S x E ~ P(S) is the table of moves. 

S o is a subset of  S - -  the set of initial states. 

F is a subset of  S - -  the set of final states. 

Let t = (v, E) ~ Vz. 
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A run o f  A over  t is a function r: E + ~ S s.t. 

1) r(x)ESo for  x 6 F t ( E  +) 

2) r(x)~M(r(xO), r(xl) ,v(x)) for  x 6 E .  

A accepts t i f f  there is a run o f  A over  t s.t. r(A) e F .  The set defined by A is 

the set o f  all t ~Vz accepted by A and is denoted by T(A).  

A is a deterministic s.a. (d.s.a.) iff A is s.a. and for  all ( s l , s2 ,a )~S  x S x Z 

] M ( S 1 , S z a ) l - -  1 and ISol = 1. 

DEFINITION 1.6. A cl imbing au toma ton  (c.a.) over  Z is a quadruple  (S ,  M,  So, F )  

where S, So, F are as in definition 1.5 and M :  S x Z ---,P(S x S) is the automaton) 

table. Let  t = (v, E) ~ Vz. 

A run  o f  A over  t is a funct ion r:  E + ~ S s.t. 

1) r(A) ~ So 

2) (r(xO), r (x l ) )  ~ m(r(x) ,  v(x)) for  x ~ E .  

A accepts t i f f  there is a run r o f  A over  t s.t. for  all x ~ Ft(E +) r(x) E F.  T(A)  

is the set o f  all t ' s  accepted by A .  

The  following theorem follows Thatcher  and Wright.  

THEOREM 1.7. The following three statements are equivalent (B =__ V,~) 

1) There  is a s.a. A s.t. T ( A ) =  B.  

2) There  is a d.s.a. A s.t. T(A) = B. 

3) There is a c.a. A s.t. T(A) = B.  

In  any of  the condit ions o f  the theorem is fulfilled we call B a regular  set. 

2. Algebraic characterization of regular sets. 

NOTATION. Let  (v, E), (u, G), (w, H)  e Vz and x E Ft(E) By [E;  x;  H ;  G] we 

mean  the tree E U {x0} • H U {xl} • G.  The  functions v, u, w are natura l ly  em- 

bedded in a function over  [E;  x;  H ,  G] .  The labelled tree, so obtained is called 

"the adjoining of (u, G), (w ,H)  to (v,E) at x "  and we denote it by 

[(v,e);x;(u,n);(wa)]. 

Exact ly as in ['2] we have an algebraic characterization o f  the regular  subsets 

o f  Vs. 

DEFINITION 2.1. An equivalence relation - over Vz is called top invariant i f  

t - s, and r, z E Vz r = (v, E), x E FifE) then: 

(2.1) [ r ;x ; t ; z ]  =- [ r ;x ; s ; z ]  and [ r ; x ; z ; t ]  =- [ r ; x ; z ; s ] .  
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THEOREM 2.2. A ~_ Vz is regular iff A is the union of equivalence classes 

of a top invariant equivalence relation of a finite index. 

PROOF. (a) Let A be a regular, let B be the d.s.a, defining A.  Define = by" 

(2.2) s = t ~ for any B run rl over s and any B run r2 over t : r l (A ) = r2(A). 

= is easily seen to be a top invariant equivalence relation such that to any 

state corresponds naturally an equivalence class of  = and vice versa, which 

means that there are only finitely many classes. A is the union of  the classes 

corresponding to final states of  B.  

(a) Let - be a top invariant equivalence relation of  a finite index and let K 

be the set of  its equivalence classes. Let A = • N where N _ K and denote 

by R(x) (for x e K) any representative of  x in V~. 

Define a d.c. by B = ( K  u {I}, M, I, N )  where I is an element not in K. M is 

defined by: 

(2.3) M(x,y ,a)  = [((A,a){A});A;R(x);R(y)]= x , y ~ K  

M ( t ,  I, = 

Define M(x, I, a) and M(I, y, a) as you like. 

In (2.3) [t] = is the equivalence class of  t modulo -=. 

A is clearly seen to be T(B), because for a B run over t holds r(A) = [ t ]= .  

Q.E.D. 

Further extending the analogy with [2] we can find a canonical representation 

for the minimal d.s.a, defining a given regular set A. 

This is done by regarding the top invariant relation over Vz: 

A 
t -- s ,~ ( t cA*-*s~A)  and for any h,g~V~ (2.4) 

and 

h = (u, H), x ~ Ft(H) hold 

[ h ; x ; g ; t ] s A  ~ [h;x;g;s] cA  

[ h ; x ; t ; y ] E A  <~ [ h ; x ; s ; g ] E A .  

A 
One can prove that the d.s.a. B built as in Theorem 2.1 for = is up to isomor- 

phism the unique minimal d.a.s, defining A. 
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3. Probabilistie automata. 

Following Rabin in [2] we consider automaton whose transition table con- 

tains a probability distribution for all the possible transitions and the automaton 

allows an element of  Vz iff it is probable enough that a random run will be a 

"good  run" .  Again we have two kinds of  automata  a probabilistic climbing 

automaton (p.c.a.) and a probabilistic sinking automaton (p.s.a.). 

DEFINITION 3.1. A probabilistic climbing automaton over Z is an 5-tuple 

(S,  M, so;F, 2) where S F have the same meaning as in the definition of  c.a. 

so e S  is the initial state, M is the transition probability table: 

M : S  x A x S × S ~ (zIO -< z -< 1} 

(3.1) where ~, M(s, o-, sl, $2) = 1 

(sl, s~) e S × S 

;t is a real number 0 =< 2 _-__ 1 called the cut point of  the automaton.  Let B be 

the c.a (S,  M' ,  So, F )  where M'(s ,  tr) = S x S. A run of  the p.c.a, over t is a 

run of  B over t. 

The probability of  a run of  A over t = (v,E) is defined as 

(3.2) pb ~ (r) = ~I M(s, cr, sl,s2) 

where the multiplication runs over all 4-tuple (s, a, s 1, s2) such that there is x e E 

v(x) = o" r (x )  = s and r(xO) = sl r (xl )  = s2 and such 4-tuples appear as many 

times as there are such ' x ' - s .  

The probability of  the tree t = (v,E) by the p.c.a, is 

(3.3) pba(t) = ~, pbA(r) 

where the sum is over all the runs over t such that r(Ft(E+)) ~_ F. We shall omit 

the superscript in pb a whenever no confusion is possible. A accepts t i f  

pbA(t) > 2 (2 is the cut point of  A .) T(A) is the subset of  Vz accepted by A.  

The example given in 1-3] can be easily extended here to prove that p.c.a, are 

stronger than c.a. (Any c.a is equivalent to some p.c.a. : choose a probability 

distribution which will yield the same set of  runs with positive probability and 

take 2 = 0.) 

However we look for some general condition under which a p.c.a, is equivalent 

to c.a and as in [3] for linear probablistic automata  we have 
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DEFINITION 3.2. The cut point of  a p.c.a. A is called isolated if it is an isolated 

point of  the set {pb~(t)Jt~V~} u{,~}. (We can assume ;t ~ pbA(t) for all t - -  

otherwise we " m o v e "  2 a little.) 

THEOREM 3.1. For any p.c.a. A with isolated cut point there exists a c.a. B 
such T(B) = T(A) .  

PROOF. By Theorem 2.1 it is sufficient to prove that the relation =r(a) defined 

by (2.4) is of  finite index for it can easily be seen that this relation fulfills all con- 

ditions imposed in Theorem 2.2 (except possibly being of finite index). 
r(a) Let t i = (vi, E~) 1 < i < j be a set of  trees inequivalent by - . We show 

that j is bounded. Because 2 is isolated there is 6 > 0 such that the interval 

[2 - 6, 2 + 6] is exclusive of  {pba(t) [ t ~ Vz}. Let So, s l , ' " ,  s,_ a be the states of  

A and let Ai be the p.c.a, which is the same as A except that its initial state is s~ 

(A = A0). The probability vector of t E Vz is 

(3.4) pb(t) = (pbA°(t), .... pb a"- a(t)) 

pb(t) ~ E " - - t h e  n dimensional euclidean space. We use the norm 11 

n - - I  

(3.5) Jlpb(t)[] = Y~ [phA'(t)[. 
"-* i = 0  

Let t and s be inequivalent by - r (A) . t  = (v,E) and s = (u,G).  By (2.4) it 

means that either 

(a) s ~ T(A) and t~ T(A) or conversely which implies 

26 _<_ J pA°(s) - pA°(t) l < [] pb(s) - pb(t)H 

or (b) there are k = (n, K) h = (l, E) ~ Vz and x ~ Ft(E) such that [h; x; r; s] ~ T(A) 

and [ h ;x ;  k; t] ~ T(A) ,  or conversely or [h;x;s;  k] ~ T(A) ,  and [h ;x ;  t; k] ~ T(A)  

or conversely. 

Assume the first alternative. The treatment of  the other cases is similar. 

For  m e Vz let 

pi(m) = ~, pb'J(r) where the sum is over all runs over I-h; x;k; m] 

such that 

(3.4) r(Ft(E - {x}) +) ~ F,  r(Ft{xO} .K+))  c_ F and r(xl)  = s,. 

p~ is the probability of  passing x l  with the state si and using only those runs 

which are " g o o d "  on the part of  [h; x; k; m] which is composed of  (E - {x}) W K .  
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From this definition it is clear that p~ does not depend on m. 

To go on with the proof we need the following: 

LEMMA 3.2. 0 < p, < 1 

n - 1  

p'4([h;x;k;m]) = ~ p~. pbA'(m). 
i = O  

Israel J. Math., 

PROOF. By careful observation of the notions meaning 

Now [h; x; k; s] ~ T(A) and [h; x; k; t] ~ T(A) implies 

28 < pa([h; x; k; s]) - pa([h; x; k; t]) 

n - 1  n - 1  

(3.7) = E p,(pba'(x) - pb'~'(t)) < ~ p, [pb'd,(s) - pb'~,(t)[ 
i = 0  t = 0  

n--1 

< Y_. ]pbA'(s) - -pbA'( t ) l  = ] l P b ( s ) - p b ( t ) l [ .  
i = 0  --* 

The conclusion 28 = [] pb(s) - pb(t)][ holds in all the other cases that s ~r(a) t. 

Now t, 7~ r(AJtj for i ¢ j so [1 pb(ti) - pb(tj)]1 > 28 so we have j vectors in the set 

(3.8) {(Xl,... ,x,) [ 0 < x, < 1} = c 

such that the distance between any two (by the l~ norm) is greater than 28. Now 

we use: 

LEMMA 3.3. I f  u,, llu,- ujll >= e, e j, then k >  (1 + n/e)". 

PROOF. We divide the cube c into ([1 + n/e])" cubes (where Ix] is the integral 

part of x) each side of each of them is less that e/n. II u , -  uj l[ z e implies that 

there is at least one coordinate e such that [ u~ -  u~[ > e/n which means that u, 

and uj cannot lie in the same cube, so k < ([1 - n/e]) n. 

By the lemma we get that j < [1 + n/28] n so T(A) = T(B) for some c.a. 

[1 + n/28] n is of course a bound for the number of states of  the d.s.a, de- 

fining T(A). Q.E.D. 

Using the same method we can define the notions of a probabilistic sinking 

automata (p.s.a.) and prove the same kind of cut-point theorem for p.s.a. 

We do not know whether p.s.a, is equivalent to p.c.a. 
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4. Weighted context free grammars 

DEFINITION 4.1. A context free grammar  (c.f.g.) is a quadruple. 

G = <Z o, Er  o, tr, P )  where V is a finite non-empty s e t - -  the vocabulary Z T is a 

non-empty subset of E -  the set of  terminals, a is an element of  E ~ = Z - E  r -  

the initial symbol, P is a finite non-empty subset of  Z~¢ x (Z* - {A}), is the set 

of production rules of  G. 
P 

We may write ¢-~ w as for(i ,  w) E P snd drop P where no confusion is possible. 

For  x, y ~E* we write x ~ y  iffthere are u, v, w ~ E * ,  ~ ~ VN s.t. x = u¢V, y = uwv 
P 

and ~ ~ w. 

We write x e Y iff there is a sequence x = Zo z l ' " z ,  = y s.t. for 0 < i < n  
P 

Z i ---+ Z i +  1 • 

Such a sequence is called a derivation of  y f rom x in . L(G) the language of  

G is the set of  all x ~ E* s.t. x can be derived in G f rom a .  

DEFINITION 4.2. A weighted context free grammar  (w.c.f.g.) is a six-tuple. 

G = <Z, Zr, tr, P, w, 2> where E, Zr, a and P have the same meaning as in def- 

inition 4.1. 

w: P ~ [0, 1] is the weight function of  the productions and 2 is the cut point. 

0 < 2 < 1. The weight o f  a derivation in <Z, Zr, a, P> Zo, zD. . . ,  zn (W(Zo,..., zn)) 

is the product o f  the weights of  the production used in the derivation. 

L ( G ) - - t h e  language of  G is the set of  all x ~ Z *  s.t. x can be derived in 

(Z, E T, a, P> by a derivation of weight greater than 2. 

W ( x ) -  the weight of  x is sup W(a = z o, z 1, ..., z,, = x) where zo, ..., z, is a 

derivation in <Z, Er, a, P>.  

DEFINITION 4.3. 2 is an isolated cut point of  w.c.f.g, if  2 is an isolated point 

of  the set { W ( x ) l x ~ Z r }  w {2}. Any derivation can be written in a natural way 

as a finite tree which is called the derivation tree (see [5]). Using the connection 

between the set o f  derivation trees of  c.f.g, and regular subsets o f  Vz found by 

Thatcher, we can prove in the same form as in Section 3. 

THEOREM 4.4. I f  G is w.c.f.g, with isolated cutpoint, there is a e.f.g. G' s.t. 

L(G) = L(G').  
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